Nama: RAISYA ALIA YUSARIN
Kelas: XI IPS1
Kamis, 21 Juli 2022
Induksi matematika merupakan sebuah metode pembuktian deduktif yang dipakai guna membuktikan pernyataan matematika yang berkaitan dengan himpunan bilangan yang terurut rapi (well ordered set).
Bilangan tersebut contohnya bilangan asli maupun himpunan bagian tak kosong dari bilangan asli.
Ada 3 cara pembuktian di dalam matematika,yaitu:
1. Pembuktian secara langsung
2. Pembuktian secara tidak langsung
3. Pembuktian secara induksi Matematika
A. PEMBUKTIAN PERNYATAAN MATEMATIKA BERUPA BARISAN KETIDAKSAMAAN DAN KETERBAGIAN
Pembuktian PERTIDAKSAMAAN
Berikut merupakan beberapa sifat pertidaksamaan yang sering dipakai, antara lain:
1. Sifat transitif
a > b > c ⇒ a > c atau
a < b < c ⇒ a < c
2. a < b dan c > 0 ⇒ ac < bc atau
a > b dan c > 0 ⇒ ac > bc
3. a < b ⇒ a + c < b + c atau
a > b ⇒ a + c > b + c
Contoh 1:
P(k) : 4k < 2k
P(k + 1) : 4(k + 1) < 2k+1
Apabila diasumsikan bahwa P(k) benar untuk k ≥ 5, maka tunjukkan P(k + 1) juga benar !
Ingat bahwa target kita yaitu unutk menunjukkan, sehingga:
4(k + 1) < 2k+1 = 2(2k) = 2k + 2k (TARGET)
Kita bisa mengawalinya dari ruas kiri pertidaksamaan di atas menjadi:
4(k + 1) = 4k + 4
4(k + 1) < 2k + 4 (karena 4k < 2k)
4(k + 1) < 2k + 2k (karena 4 < 4k < 2k)
4(k + 1) = 2(2k)
4(k + 1) = 2k+1
Berdasarkan sifat transitif maka dapat kita simpulkan bahwa 4(k + 1) < 2k+1
Mengapa 4k bisa berubah menjadi 2k ?
Sebab menurut sifat 3, kita diperkenankan untuk menambahkan kedua ruas suatu pertidaksamaan dengan bilangan yang sama.
Sebab tidak akan merubah nilai kebenaran pertidaksamaan tersebut. Sebab 4k < 2k benar, yang mengakibatkan 4k + 4 < 2k + 4 juga benar.
Darimana kita tahu, bahwa 4 harus diubah menjadi 2k ?
Perhatikan target.
Hasil sementara yang kita perloleh yaitu 2k + 4 sementara target kita yaitu 2k + 2k.
Untuk k ≥ 5, maka 4 < 4k dan 4k < 2k yaitu bernilai benar, sehingga 4 < 2k juga benar (sifat transitif). Hal tersebut mengakibatkan 2k + 4 < 2k + 2k benar (sifat 3).
Contoh 2:
Buktikan untuk masing-masing bilangan asli n ≥ 4 dan berlaku
3n < 2n
Jawab:
P(n) : 3n < 2n
Akan dibuktikan P(n) berlaku untuk n ≥ 4, n ∈ NN
Langkah awal:
Akan menunjukan bahwa P(4) benar
3.4 = 12 < 24 = 16
Sehingga, P(4) bernilai benar
Langkah induksi
Ibaratkan bahwa P(k) benar, yakni:
3k < 2k, k ≥ 4
Akan menunjukan bahwa P(k + 1) juga benar, yakni:
3(k + 1) < 2k+1
3(k + 1) = 3k + 3
3(k + 1) < 2k + 3 (karena 3k < 2k)
3(k + 1) < 2k + 2k (karena 3 < 3k < 2k)
3(k + 1) = 2(2k)
3(k + 1) = 2k+1
Sehingga, P(k + 1) juga bernilai benar.
Berdasarkan konsep dari induksi matematika, terbukti bahwa P(n) berlaku untuk masing-masing bilangan asli n ≥ 4.
Pembuktian KETERBAGIAN
Pernyataan “a habis dibagi b” yang bersinonim dengan:
a kelipatan b
b faktor dari a
b membagi a
Apabila p habis dibagi a serta q habis dibagi a, sehingga (p + q) juga akan habis dibagi a.
Misalnya, 4 habis dibagi 2 dan 6 habis dibagi 2, maka (4 + 6) juga akan habis dibagi 2
Contoh :
Buktikan 6n + 4 habis dibagi 5, untuk masing-masing n bilangan asli.
Jawab:
P(n) : 6n + 4 habis dibagi 5
Akan dibuktikan dengan P(n) benar pada masing-masing n ∈ N.
Langkah awal:
Akan menunjukan P(1) benar
61 + 4 = 10 habis dibagi 5
Sehingga, P(1) benar
Langkah induksi:
Ibaratkan bahwa P(k) benar, yakni:
6k + 4 habis dibagi 5, k ∈ N
Akan menunjukan P(k + 1) juga benar, yakni:
6k+1 + 4 habis dibagi 5.
6k+1 + 4 = 6(6k)+ 4
6k+1 + 4 = 5(6k) + 6k + 4
Sebab 5(6k) habis dibagi 5 dan 6k + 4 habis dibagi 5, maka 5(6k) + 6k + 4 juga akan habis dibagi 5.
Sehingga, P(k + 1) benar.
Berdasarkan dari prinsip induksi matematika tersebut, terbukti bahwa 6n + 4 habis dibagi 5, untuk masing-masing n bilangan asli.
Bilangan bulat a akan habis dibagi bilangan bulat b apabila dijumpai bilangan bulat m sehingga akan berlaku a = bm.
Misalnya, “10 habis dibagi 5” benar sebab adanya bilangan bulat m = 2 sehingga 10 = 5.2.
Maka dari itu, pernyataan “10 habis dibagi 5” bisa kita tuliskan menjadi “10 = 5m, untuk m bilangan bulat”
B. MENYELESAIKAN CONTOH PEMBUKTIAN PERNYATAAN MATEMATIKA
Contoh Soal
Buktikanlah jika 32n + 22n + 2 benar-benar habis dibagi 5.
Agar bisa membuktikannya, maka sebaiknya Anda menerapkan beberapa tahapan diantaranya:
Langkah Pertama
32(1) + 22(1)+2 = 32 + 24 = 9 + 16 = 25, jadi benar-benar habis dibagi 5. Hal ini terbukti.
Langkah Kedua Menggunakan 2 (n = k)
32k + 22k + 2
Langkah Ketiga ( = k + 1)
= 32(k+1) + 22(2k+2)
= 32k+2 + 22k+2+2
= 32(32k) + 22(22k+2)
= 10(32k) + 5(22k+2) – 32k – 22k+2
= 10 (32k) + 5 (22k+2) – (32k + 22k+2)
Diperoleh:
10 (32k) sudah habis dibagi 5, 5(22k+2) sudah habis dibagi 5 dan –(32k) + 22k+2 juga habis dibagi 5.
Semua bilangan bulat tidak negatif n, buktikan dengan memakai induksi matematika bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1.
Cari tahu basis induksi terlebih dahulu yaitu 20 = 20+1 – 1. Jadi, sangat jelas bahwa 20 = 1
Jika p(n) benar, yakni 20 + 21 + 22 + … + 2n = 2n+1 – 1 adalah benar, maka tunjukkan bahwa p(n+1) juga benar: 20 + 21 + 22 + … + 2n = 2n+1 – 1 juga benar, maka tunjukkan bahwa 20 + 21 + 22 + … + 2n + 2n+1 = (20 + 21 + 22 + … + 2n) + 2n+1 = (2n+1 – 1) + 2n+1 (hipotesis induksi).
= (2n+1 + 2n+1) – 1
= (2.2n+1) – 1
= 2n+2 – 1
= 2(n+1)+1 – 1
Maka dapat dibuktikan bahwa semua bilangan bulat tidak negatif n, terbukti bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1.
C. LATIHAN SOAL PERNYATAAN MATEMATIKA BERUPA BARISAN KETIDAKSAMAAN DAN KETERBAGIAN
Daftar pustaka materi dan contoh soal yang di cari
https://www.yuksinau.id/induksi-matematika/
https://mamikos.com/info/contoh-soal-induksi-matematika-pljr/
Tidak ada komentar:
Posting Komentar